Los pueblos que presenciaban el fenómeno tenían sus propias interpretaciones y le daban, según las épocas, determinados significados.
Los esquimales, los indios atabascos, los lapones, los habitantes de Groenlandia, e incluso las tribus del noreste de
Cuenta una leyenda esquimal: "Los límites de la tierra y el mar son bordeados por un inmenso abismo, sobre él aparece un sendero estrecho y peligroso que conduce a las regiones celestiales. El cielo es una gran bóveda de material duro, arqueado sobre la tierra. Hay un agujero en él a través del que los espíritus pasan a los verdaderos cielos. Sólo los espíritus de aquellos que tienen una muerte voluntaria o violenta y el cuervo, han recorrido este sendero. Los espíritus que viven allí encienden antorchas para quitar los pasos de las nuevas llegadas. Esta es la luz de la aurora. Se pueden ver allí festejando y jugando a la pelota con un cráneo de morsa.
El sonido silbante y chasqueante que acompaña, a veces, a la aurora son las voces de esos espíritus intentando comunicarse con las gentes de la tierra. Se les debería contestar siempre con voz susurrante. A los espíritus celestiales se les llama "selaimut", "sky-wellers", moradores del cielo".
Historia
La aurora ha sido y es, para muchos, uno de esos fenómenos que, por su esplendor e infrecuencia, reviste un cierto carácter mítico y misterioso. Por ello no ha pasado desapercibido para los pensadores y hombres de la ciencia. Anaxágoras (500-
La realidad era que la aurora (Luces del Norte) aparecía en el cielo como persona non grata, sin respeto a las leyes mecánicas de la naturaleza de aquellas épocas. Los habitantes de las zonas en las que es más visible la aurora no han dejado de reflejar en sus símbolos y dibujos este fenómeno, bien fuesen los indios de Canadá, o los esquimales del norte.
La época de
El desafío científico en nuestros días, era de la tecnología espacial, cobra nuevo carácter, no ya sólo desde el perfeccionamiento de la teoría electromagnética que explica el fenómeno en función del viento solar, sino desde el especial interés que el problema energético tiene en la actualidad y la posibilidad de estudiar al natural el comportamiento de la materia en forma de plasma (estado de la materia donde los átomos se ionizan y se crea el estado de plasma formado por cationes y electrones), aspecto íntimamente ligado con la consecución controlada de la energía de fusión. En el terreno de las comunicaciones, el fenómeno de la aurora ha producido ya sorprendentes sucesos como el ocurrido el 2 de septiembre de 1987, cuando durante dos horas fue posible enviar mensajes de Boston a Portland y viceversa sin fuente de energía auxiliar, sólo con la corriente eléctrica generada por la aurora. Pero también ha sido la causa de graves incidentes, como la interrupción de comunicaciones en aeronaves o la pérdida de control sobre algún cohete espacial.
El interés científico y tecnológico del fenómeno aurora, es por tanto, relevante. Sus aspectos históricos y legendarios son apasionantes y su estética es indescriptible.
Aurora.
Una aurora boreal comienza con un brillo fosforescente en el horizonte. Este brillo disminuye, pero vuelve a intensificarse. Es entonces cuando aparece un arco iluminado, que a veces se cierra en forma de círculo (corona boreal) muy brillante, con centro en el meridiano magnético; que se eleva en el cielo. A continuación, nuevos arcos iluminados aparecen y siguen al primero. Pequeñas ondas y rizos se mueven a todo lo largo de estos arcos.
En cuestión de unos pocos minutos, un cambio dramático se observa en el cielo. Un bombardeo de partículas golpea a la atmósfera superior, fenómeno que recibe el nombre de subtormenta auroral (en Inglés, auroral sub-storm.) Rayos de luz caen del espacio, formando cortinas que se expanden en el cielo, cuyos bordes superior e inferior están coloreados de violeta y rojo. Sus colores también pueden mezclarse, o entretejerse unos con otros.
Las cortinas desaparecen y vuelven a formarse a partir de nuevos rayos de luz. Un observador puede mirar directamente sobre su cabeza y observar entonces rayos dirigiéndose en todas direcciones, formando lo que se llama corona auroral.
Luego de 10 o 20 minutos, el bombardeo termina y la actividad decrece. Las bandas de luz dejan de propagarse y se desintegran en una luz difusa que se extiende por todo el cielo.
Las que se presentan en las inmediaciones del Círculo Polar Ártico se llaman auroras boreales, y las del Antártico, auroras australes. Las auroras son más frecuentes en primavera y en otoño.
Causas de la aurora.
La actividad solar produce partículas que son lanzadas al espacio, emite grandes cantidades de rayos X, ultravioletas y radiación visible, así como corrientes de protones y electrones de alta energía. La radiación X y ultravioleta puede llegar a
Los estudios realizados indican que el brillo auroral se desencadena cuando el viento solar, que recorre todo el Sistema Solar, se ve reforzado por partículas subátomicas de alta energía procedentes de las manchas solares. Los electrones y protones penetran en la magnetosfera terrestre (región del espacio donde queda confinado el campo magnético terrestre y que actúa como escudo protector ante buena parte de las partículas cargadas de la radiación cósmica. Su límite exterior recibe el nombre de magnetopausa.) y entran en la zona inferior de los cinturones de radiación de Van Allen, sobrecargándolos. Esas partículas, protones y electrones colisionan con las moléculas de gas de la atmósfera, excitándolas y produciendo luminiscencia.
Vamos a ver que es un cinturón de Van Allen
Los cinturones de radiación de Van Allen son áreas de la alta atmósfera que rodean
El origen se debe a un fenómeno que se produce cuando las partículas atómicas (en su mayor parte protones y electrones) emitidas desde la corona solar, o viento solar son arrastradas con un trayecto helicoidal alrededor de las líneas de fuerza del campo magnético terrestre, entre los polos norte y sur. La mayor parte de las partículas de alta energía (protones) se encuentran en el cinturón interior, mientras que los electrones suelen concentrarse en el externo.
La intensidad de radiación presente en los cinturones de Van Allen produce un elevado deterioro de los circuitos electrónicos y paneles solares de las naves espaciales, mientras que el efecto de una exposición sobre los seres vivos resulta extremadamente dañino. Por esta, razón las misiones espaciales requieren tanto de una protección eficaz ante el poder penetrativo que representa el bombardeo de partículas subatómicas, como de una perfecta planificación en la que se reduce al mínimo la exposición de los astronautas frente a dichas radiaciones.
La aurora adopta una inmensa variedad de formas: el arco auroral, un arco luminoso que cruza el meridiano magnético; la banda auroral, que suele ser más ancha y mucho más irregular que el arco; los filamentos y luces ondulantes perpendiculares al arco o a la banda; la corona, un círculo luminoso cercano al cenit; las nubes aurorales, masas nebulosas difusas que pueden aparecer en cualquier parte del cielo; el brillo auroral, un fenómeno luminoso situado a gran altura sobre el horizonte, con filamentos que convergen hacia el cenit; cortinas, abanicos, llamas o luces ondulantes de distintas formas.
También se han observado auroras en las atmósferas de otros planetas, en particular de Júpiter.
Hay una zona circular sobre la región polar en la que los electrones procedentes del Sol inciden uniformemente y al alcanzar los gases atmosféricos se produce una emisión espectral que da lugar al fenómeno luminoso de la aurora a alturas comprendidas entre los cien y cuatrocientos kilómetros. Esta zona donde se forman las auroras se llama óvalo auroral.
La emisión de luz corresponde al espectro del oxígeno en su color verdoso (5.577 Å) y al del nitrógeno en su color violeta (3.914 Å). Pero en las capas altas de la atmósfera, y en determinadas condiciones, existe oxígeno atómico que produce una emisión de luz roja (6.300 Å) que, a su vez, produce ese gran enrojecimiento del cielo que aparece sobre todo en las auroras más ecuatoriales (como puede verse más adelante en la aurora vista desde Figueres) cuando, por efecto de las tormentas magnéticas, se produce un desplazamiento hacia el sur del óvalo auroral. En estos casos se piensa que el plasma es expulsado del Sol a velocidades de 500-1.000 km/s, frente a los 300 km/s con que sale normalmente. Debido a ello, se ha sugerido que los electrones alcanzan en la ionosfera temperaturas de 20.000 K durante las tormentas magnéticas, lo que suministra la energía suficiente para la excitación del oxígeno atómico y la emisión de la banda roja a 6.300 Å, lo que requiere una energía de 2 eV.
Al igual que el viento solar es variable, las formas, frecuencias e intensidades de la aurora también lo serán en un período del once años.
La consideración física más aceptada para comprender el fenómeno de la aurora está referida a la creación de una dinamo magnetosférica entre el Sol y
) y V la velocidad de la luz( 300.000 km/s). El voltaje generado se estima en 50 kV (Kilovoltios) y la intensidad de corriente del orden de 106-107 Amperios.
Desde 1970, satélites de órbita polar han podido observar con mayor exactitud aún la estructura de las auroras así como la precipitación de partículas energéticas en zona auroral; se ha logrado levar a cabo auroras artificiales mediante la inyección de electrones desde cohetes (experimentos Araks).
Para saber mas
No hay comentarios:
Publicar un comentario